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A liquid-metal flow impinging upon a region of non-uniform d.c. magnetic field 
experiences a certain amount of braking owing to the effect of Lorentz forces acting 
on the metal. Practical electromagnetic flow control devices utilize this property to 
alter the flow rate a t  which a liquid metal emerges from a receptacle. As a 
preliminary step to understanding the three-dimensional behaviour a numerical 
model is constructed which examines the two-dimensional flow of liquid metal 
passing through a quadrupole magnetic field generated by four line currents. I n  the 
vicinity of the local neutral point it is found that the nonlinear flow becomes 
unidirectional and linear. This linear behaviour agrees well with analytic solutions 
for flow through an infinitely extended neutral point. The generalized forms of the 
magnetic fields which permit unidirectional flows to  exist are investigated in both 
axisymmetric and two-dimensional geometries. Examples of these fields include both 
the extended neutral point and the uniform transverse magnetic field present in 
Hartmann flow. The optimum conditions for braking the flow with a specified field 
are characterized by the pressure and volume data. These variables are derived from 
the model for a, range of values of field strengths and Reynolds numbers and allow 
a comparison to  be made with the asymptotic results obtained from the linear theory 
for two-dimensional flows. The numerical scheme may be adapted for any type of 
magnetic field and also permits extensions to the more realistic axisymmetric case. 

1. Introduction 
Magnetohydrodynamics (MHD) has assumed growing importance in the metal- 

lurgically based industries with its especial application to the control of liquid- 
metal flows. Electromagnetic (e.m.) flow control devices possess many advantages, 
of which the principal is their ability to penetrate solid shells and interact with the 
liquid metal held within. The absence of any direct physical contact between the e.m. 
device and the liquid metal has the added advantage of not introducing any 
impurities into the metal and avoiding corrosion of the device. These principles are 
employed, for example, in the operation of induction furnaces in which circulating 
fluid motions are induced in molten metal by the interaction between eddy currents 
in the metal and an applied a x .  magnetic field. This type of electromagnetic stirring 
prior to solidification can radically improve the quality of metal which is produced. 

Another important application of e.m. flow control occurs in the regulation of the 
rate a t  which liquid metal falls from a. tun dish. The means of controlling the flow 
through the exit nozzle is provided by an e.m. valve, which is a current-carrying coil 
encircling the exit nozzle. Regulation of the rate of fall of liquid metal is achieved by 
varying the high-frequency currents in the coil which in turn alters the magnetic field 
responsible for braking the flow. Working industrial models of this type are described 
in Gamier (1982) and Lillicrap (1989). Valves of this nature can be automated and 
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FIGURE 1. MHD duct flow in a non-uniform magnetic field generated by a quadrupolar 
arrangement of line currents. 

incorporated into continuous manufacturing processes to provide regulated amounts 
of liquid metal from a tun dish into a series of receptacles passing below on a 
conveyor belt. 

Many of the MHD applications in industry use high-frequency magnetic fields 
which are derived from a.c. current-carrying coils supplied by high-frequency power 
packs. In  these cases the eddy currents induced on the surface of the particular liquid 
metal are much greater than the corresponding currents produced by the interaction 
between an equivalent d.c. field and the metal velocity. D.C. magnetic fields act 
throughout the liquid metal flow and need to be very large to produce currents 
comparable to the a.c. ones. Despite the less efficient action of d.c. fields they do find 
application as e.m. brakes, for example, in the continuous slab casting processes 
developed by ASEA (pointed out in a personal communication by H. Tinoco, 1987). 
In  general, d.c. magnetic fields are cheap and safe to generate and perhaps with 
future improvements in technology (e.g. superconductors) they may produce effects 
on liquid-metal flows far surpassing those of comparable a.c. devices. Consequently, 
as the applications of d.c. magnetic fields become more extensive, better models of 
flow behaviour in various magnetic fields need to be established to enable prediction 
of flow behaviour. Unexpected and counter-intuitive results on the flows of liquid 
metals in magnetic fields have been observed and to a large extent modelled, but 
wide gaps remain to be bridged between experiment and theory, especially regarding 
flows in non-uniform fields. 

In  this paper we focus on the behaviour of a liquid-metal flow passing through a 
non-uniform d.c. magnetic field. The practical arrangement consists of a d.c. coil 
surrounding a pipe in which a specified flow of liquid metal is braked by the Lorentz 
forces acting throughout the flow. On account of the complexity of modelling a fully 
three-dimensional pipe flow through a non-uniform field, we initially consider the 
simpler case of two-dimensional duct flow with the current coil replaced by a 
quadrupole arrangement of line currents, figure 1. We hope to establish the 
parameter ranges for which a large pressure drop is induced in a given flow so that 
the device acts as an efficient d.c. brake. 

The role of turbulence in MHD channel flows is not directly considered in this 
paper owing to the difficulty of modelling the problem of a fully time-dependent flow. 
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This does not mean that the flows modelled in this paper are unphysical since the 
omission of a detailed description of fluid turbulence can be justified by the tendency 
of the magnetic field to inhibit its generation. This behaviour is due to the reluctance 
of the field lines to be disturbed by small-scale fluctuations. Consequently, magnetic 
forces acting on the flow throughout the field domain tend to laminarize an otherwise 
pre-existing turbulent flow. It is also doubtful whether turbulence may be present to 
any significant extent both upstream and downstream of the magnetic region in the 
flows considered. This can be explained from general hydrodynamic considerations 
owing to the use of fairly small values of the Reynolds numbers in the calculations. 
Therefore, for suitable parameter ranges the results obtained from a turbulent-free 
MHD channel flow model are likely to closely reflect those found in experiment. 

The general equations governing MHD channel flow are developed in 92 where 
particular mention is made of the boundary conditions upon the flow. A 
unidirectional solution of these equations is then found in 9 3 for the simpler problem 
of linear MHD flow through an extended neutral point in both axisymmetric and 
two-dimensional flows. Despite the unrealistic nature of the extended neutral-point 
field in the analytic model the study does serve to elucidate the likely behaviour of 
a fully developed flow impinging upon a region of non-uniform magnetic field 
containing a local neutral point. Unidirectional solutions to the MHD equations were 
first discussed by Pai (1954) and Regirer (1960) in axisymmetric and two-dimensional 
geometries respectively. Only specific forms of the magnetic field permit the 
existence of these types of solutions (Regirer 1960; Kenny 1990 - two-dimensional 
and axisymmetry respectively) which include the familiar Hartmann flow (Hart- 
mann 1937 ; Shercliff 1965) through a uniform transverse magnetic field. The linear 
theory of a two-dimensional liquid metal flow through an extended magnetic neutral 
point predicts that in the limit of large magnetic field strengths the flow develops a 
‘jet-like’ structure centred on the axis of the channel (Regirer 1960; Kenny 1989, 
1990). A similar analytical study of the axisymmetric case is carried out in 93.1 and 
shows that in this case the unidirectional flow develops a slug (uniform) profile a t  
large imposed field strengths in contrast to the two-dimensional neutral-point flow, 
Pai (1954). 

In order to understand the full two-dimensional MHD flow behaviour a numerical 
model is constructed in $4 based upon the solution of the stream function-vorticity 
equation. The computational algorithm employs a compact scheme which is accurate 
to fourth order in the grid spacing and was first developed by Dennis (1985). In  this 
model a specified duct flow impinges upon a region of non-uniform magnetic field 
which acts for a specified length of channel and compares realistically with the 
experimental situation in which the magnetic field of the e.m. device decays rapidly 
with distance along the duct. The non-uniform magnetic field contains a local neutral 
point and is generated by a quadrupolar arrangement of line currents external to the 
duct. After passing through this region of non-uniform field the flow emerges into a 
field-free region of channel where it finally settles down to Poiseuille flow. 

Complications frequently arise in numerical models when quantities are estimated 
near to the boundaries and in this particular case the downstream conditions are 
suitably modified to give optimum numerical efficiency. These modifications and the 
nature of the boundary conditions incorporated into the numerical model are 
discussed in $5.  A survey of the results obtained from the model is provided in $6. 
The dependence of the volume flux/pressure drop (at fixed pressure drop/volume 
flux respectively) upon a range of mean field strengths is examined and comparison 
made with derived asymptotic results. The velocity and vorticity profiles obtained 
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near the local neutral point are observed to accord well with the corresponding 
analytical study of flow through an extended two-dimensional neutral point ($3). 
These provide clear evidence that the fully nonlinear flow becomes unidirectional in 
the vicinity of the neutral point. 

2. Equations 
A brief summary of the relevant equations used to describe steady laminar MHD 

flow in a channel is now presented. The current distribution in such a flow is 
described by Ohm’s law for a moving medium: 

f = a(E+u’ x B’), (2.1) 

wheref is the current density, a the conductivity of the liquid metal, E’ the electric 
field, u’ the velocity and B’ the total magnetic field. The magnetic field has two 
components: an imposed field B‘, and an induced component b’, so that 

B’ = BA+b’. (2.2) 

The induced magnetic field b’ is generated from the current densityf (in (2.1)) 
according to Ampkre’s law: 

(2.3) 

where ,uo is the permeability of the liquid metal (more normally po is the permeability 
of a vacuum) and where it is assumed that the imposed field Ro is not generated from 
any current sources within the flow. The interaction between the current distribution 
and magnetic field produces a Lorentz force which acts on the fluid so that an extra 
body force term appears in the Navier-Stokes equation, 

j’ = ( l /po)V x b‘, 

p(u‘.V)u’ = -Vp’+j’xB+pV2uf,  (2.4) 

where p‘ is the pressure, p is the viscosity and p is the density. The fluid is also 
assumed to be incompressible so that 

V*U‘ = 0. (2 .5)  

V - J = O  and V x E = 0 .  (2.6) 

Finally, from Maxwell’s equations it follows that for steady flows 

In  order to generalize the equations of motion to those of similar flows the 
variables are non-dimensionalized in the following way : 

u’=U,u,  B’=BoB,  f = a U , B , j ,  b ’=B,b ,  p ’ = p q p ,  (2.7) 

where U, and B, are typical values of the velocity and magnetic field respectively. 
The resulting equations take the form 

V x b = R , j ,  (2.8) 

1 1 1 
- (u*V)U = - - V P + ~ X  B+-V’U, 
N N M2 

(2.9) 

with j = E + u  x B. (2.10) 

The parameters occurring in (2.8) and (2.9) are the interaction parameter N ,  the 
Hartmann number M and the magnetic Reynolds number R, which can be expressed 
as 

N = aBta/(U,p),  M2 = aBia2/p,  R ,  = aU,a,uo, (2.11) 
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where a is a typical lengthscale. The parameters M and N are further related to the 
Reynolds number R by the relation 

(2.12) 

In reality flows are often turbulent and cannot be represented by the steady 
Navier-Stokes equations. Turbulence will be permitted in the model only in so far as 
it can be represented by a constant ‘eddy viscosity’. In this case p represents the 
eddy rather than the molecular viscosity. 

We are principally interested in laboratory applications of MHD for which it is 
generally found that R,  4 1. In  this limit R, provides a measure of the ratio of 
induced field to the average applied field B,. To first order in R, we can ignore the 
nonlinear interaction between the velocity and magnetic fields and set B x B,. This 
means that the Lorentz force occurring in (2.4) simply results from the interaction 
of the velocity field and the imposed magnetic field. 

The vorticity description of the flow is obtained by taking the curl of (2.9) and 
after rearranging the parameters according to (2.12) one finds 

R = W I N  = pU, alp. 

(2.13) 
1 
- V 2 C 2 - ( ~ . V ) C 2 + ( C 2 * V ) ~ =  - N V x ( j x B , ) ,  
R 

where R is defined in (2.12) and C2 = V x u is the vorticity vector. The term on the 
right-hand side of (2.13) represents the curl of the Lorentz force and it will be seen 
to play a crucial role in determining the behaviour of the flow for large M .  The 
nonlinear terms in (2.13) usually prevent analytical progress. However, there do 
exist some flows, considered in $4, for which (u.V)sZ and (C2.V)u both vanish. These 
flows are unidirectional and are only produced by certain magnetic fields, examples 
of which include a uniform transverse field, giving rise to the much-studied 
Hartmann flow, and the less well-known neutral-point flow in both two dimensions 
and axisymmetry. A more general discussion of magnetic fields that permit 
unidirectional flow solutions to exist is given in $3. 

3. Unidirectional neutral-point flows 
The full set of MHD equations derived in $2, (2.5)-(2.10), are nonlinear and 

prevent any sort of analytical progress being made on them. However, if certain 
simplifying assumptions are made then it should be possible to find solutions which 
will bear some resemblance to real flow behaviour. A comparison of results obtained 
for flow in the neighbourhood of a two-dimensional neutral point using both 
numerical and analytical approaches is presented in $4. The good agreement 
exhibited by these two separate investigations implies that the full nonlinear flow in 
the vicinity of a neutral point is accurately modelled by the linear equations 
examined in this section. 

The simplified model examined here consists of liquid-metal duct flows encoun- 
tering extended magnetic neutral points in both axisymmetric and two-dimensional 
geometries as in figure 1. The magnetic neutral points in the two types of geometry 
are respectively described by B, = ( r ,  0, - 22) in terms of cylindrical coordinates 
( r ,  8, 2 )  and Bo = (-5, y, 0) in terms of Cartesian coordinates (5, y, 2) .  The idealization 
of the model arises in the simplified description of the neutral point which is assumed 
to extend throughout space. Such magnetic fields give rise to flows which are 
unidirectional, depending solely on the transverse coordinate of the particular duct 
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concerned. The nonlinearities in the MHD equations disappear for these uni- 
directional flows, since the terms ( u - V ) n  and ( 6 2 . V ) ~  both vanish in (2.13). 

The other unidirectional type of flow to have been extensively studied is 
Hartmann flow, which occurs in a uniform transverse magnetic field. This forms but 
one of a family of unidirectional solutions describing flow through non-uniform 
magnetic fields which vary in the direction of the channel. Only certain functional 
forms of these magnetic fields permit unidirectional solutions to exist and include for 
example the axisymmetric neutral point first considered by Pai (1954). Regirer 
(1960) gave a generalized prescription for the forms of the magnetic fields in two 
dimensions and then solved a related problem of unidirectional flow through an 
extended neutral point. In  this paper we specialize his analysis to channel flow 
through an extended neutral point, in 53.3, and compare with the corresponding 
numerical model presented in 5 4 which examines fully developed flow impinging 
upon a non-uniform field containing a local neutral point. In the next section we 
examine the types of magnetic field which permit the existence of unidirectional 
solutions in axisymmetry. A little surprisingly the axisymmetric problem is 
mathematically simpler to  manipulate than the two-dimensional case and so it is 
considered first. 

3.1. General axisymrnetric neutral-point flow 
A conducting fluid flows through a non-conducting cylindrical pipe of radius a under 
the influence of an applied pressure difference and through an imposed magnetic field 
B,,. We show that only a magnetic stream function of the form X ( r , z )  = 
z(A,r2 +A,)  +g(r )  permits unidirectional solutions of the flow to exist in axisymmetric 
geometry. 

The symmetry of the problem enables the magnetic field to be expressed in terms 
of the following vector potential : 

where ê  is a vector in the azimuthal direction of the pipe. The velocity is assumed to 
be unidirectional and lies solely in the axial or z-direction and has a functional 
dependency on the radial coordinate r only, since V - u  = 0, so that 

u = (O,O,u(r) ) .  (3.2) 

We may simplify the equations of steady state motion derived in $2 using (3.1) and 
(3.2). For example Ohm’s law (2.10) becomes 

uxz A j = E--8. 
r (3.3) 

Clearly, since V - j  = 0 from (2.6) and V . ( u  x B)  = 0 by inspection of the term on the 
right-hand side of (3.3) then it follows that V .  E = 0 .  This result combined with the 
steady-state results of Maxwell’s equations in (2.6) implies that E is at most a 
constant vector. Taking advantage of the geometry of the problem and applying 
suitable boundary conditions we can set E = 0. 

The Navier-Stokes equation (2.9) linearizes once u is specified according to (3.2) so 
that we obtain 

1 1 
0 = - -Vp+jxB+-V2u ,  

N M2 (3.4) 
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applying the relations in (2.11). Substitution of the forms of j ,  B and u yields an 
expression for the pressure gradient which has both axial and transverse components : 

1 uxz 1 
r2 M2 x V p  = --VX+-V%(r)Z“. (3.5) 

The curl of (3.5) eliminates the pressure gradient, giving the vorticity equation in the 
8-direction relating X(r, z )  and u(r)  in the following manner : 

Equation (3.6) is similar to the stream function-vorticity equation derived in (2.13) ; 
however, the latter was obtained on the assumption that Rm = 0. The definition of 
B in (3.1) includes a component of induced field according to (2.2) and so here the 
general case of R ,  9 0 is considered. Equation (3.6) must be s2lved in tandem with 
Ohm’s law (3.3) in which we expressj in terms of X(r,z) and B using Ampkre’s law 

which on substitution into (3.3) with E = 0 yields 

Rm U X ~  = Xrr - Xr/r + x z z .  (3.8) 
Equation (3.6) is a third-order differential equation for u(r)  whose coefficients must 

be independent of z. We therefore require 

X E  =f(r). (3.9) 
Consequently, X(r, z )  has the following general form : 

x(r9 2) = Z f k )  +gW, (3.10) 

which upon substitution into (3.8) yields the two defining equations forf(r) and g(r )  : 

j ” ( r ) - f ( r ) / r  = 0, (3.11) 

and g”(r) - g ’ ( y ) / r  = RrnU(r)f(r)* (3.12) 

Solving (3.11) for the general form of f(r) yields 

f ( r )  = A,r2+A,,  (3.13) 

where A ,  and A ,  are constants. The defining equation for g(r)  from (3.12) then 
becomes 

g”(r)-g’(r) /r  = R,u(r) (A,r2+Al).  (3.14) 

We identify g(r) as the stream function of the magnetic field induced by the current 
distribution in the flow given by (3.3). Consequently, the total magnetic field B can 
be expressed as the sum of an imposed field B, and an induced field b such that 

B = B,+b = ( - (A , r+A, / r ) ,O ,2A0z )+(0 ,0 ,g ’ ( r ) / r ) ,  (3.15) 

where V x B, = 0 and V x b = R, j inside the duct. If the field B, is everywhere finite 
inside the pipe including the line r = 0 then we must have A ,  = 0. However, in the 
case of hollow pipes with a solid cylindrical core the A ,  term might be important. 

The general form for the stream function ~ ( r z )  which permits unidirectional 
velocity profiles to exist is expressed as 

(3.16) X(r, z )  = A ,  r2z + g ( r ) .  
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3.2. Axisymmetric neutral-point flow through a pipe 
It now becomes a matter of solving the vorticity equation expressed in (3.6) for the 
flow profile u(r) ,  assuming without loss of generality that A ,  = - 1,  to give 

B =  B,+b = (r,O,b(r)-2z), (3.17) 

where B, = ( r ,O,  -22), b = (O,O,b(r ) )  and b(r)  = g’(r) /r .  Upon substitution of (3.17) 
into (3.6) the following third-order differential equation for u(r)  is obtained : 

uN’(r) +u’’(r)/r-u’(l/r2+lM2r2) = 0, (3.18) 

where r is scaled so that 0 < r < 1 and M is the Hartmann number defined in (2.11). 
In order to fully specify the flow three boundary conditions for u(r)  are required. 
Firstly, we impose the no-slip condition at the wall of the pipe, so that u( 1)  = 0, and 
secondly that the flow is symmetrical about the axis, giving u’(0) = 0. Finally, the 
impetus for the flow can be provided either by a fixed pressure gradient term in (3.4) 
or by a specified flow rate. The latter condition is employed in this case for ease of 
comparison with other flows and is set to unity. Equation (3.18) can be transformed 
to a second-order differential equation whose solution was originally derived by Pai 
(1954) and exhibits the form 

(3.19) 

where a, (M)  is a constant determined by the volume flux and is given by 

a, ( M )  = ( M / x )  [cash (I&) - 11-l. (3.20) 

Figure 2 depicts the corresponding profiles for u ( r )  at various values of the Hartmann 
number for unit flux. The induced magnetic field b can be deduced from Ohm’s law 
(3.3) and (3.20),and behaves in the following manner: 

using the boundary condition that b(1) = 0. Since there are no currents external to 
the pipe then V x b = 0 there and the field vanishes outside, so that 

b(r )  = 0 ,  r 2 1,  (3.22) 
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and matching at the wall gives b(1) = 0. Integrating the expression for the pressure 
gradient in (3.5) using (3.17) and (3.21) gives the pressure distribution, 

N 2N 
p(r , z )  = -kz- -b2(r )+-b(r )z ,  

=m R m  
(3.23) 

where k can be determined from (3.5) and (3.19). A t  large fz the pressure still 
depends on r in contrast to Poiseuille flow in which no cross-channel pressure 
gradients exist. This behaviour is a consequence of the infinite extent of action of the 
magnetic field. 

The tapering form of the applied magnetic field in (3.17) might lead one to expect 
a concentration of flow towards the axis of the channel for large values of M. The 
Lorentz force exerted on the flow is minimized once the fluid is compelled to move 
along magnetic streamlines. Surprisingly, however, examination of the result 
obtained for the velocity profile in figure 2 shows that the anticipated jet structure 
at  large Hartmann numbers does not emerge. The profiles are observed to flatten for 
increasingM (see also Pai 1954) whilst conserving the volume flux through the pipe. 
The asymptotic: limits M+ co and M+O are consistent with the behaviour for slug 
flow (uniform flow) and Poiseuille flow respectively. The tendency of the flow profiles 
to flatten at large M can be explained in terms of the dominating term present in the 
vorticity equations (2.13) and (3.18), namely the curl of the Lorentz force. At large 
M in the core of the flow, where the viscous terms are small, we approximately have 

v x [ (u x Bo) x B] = 0. (3.24) 

From (3.2) and (3.17) this reduces to 

u’(r)r2 = 0, (3.25) 

and consequently u = const in this limit. A physical explanation of this flow 
behaviour lies in a consideration of the nature of the axial pressure gradient, which 
can be written as 

d5 + 9 cosh (#r2), 
-- 1 aP = -r2ao(M,S sinh (it2) 
N a z  d r  5 

(3.26) 

where the two terms on the right-hand side represent the electromagnetic and 
viscous contributions respectively. The following results are obtained for large M 
using (3.20) : 

lim $I = O(exp (-*)), lim 31 = o ( M ~ ) ,  (3.27) 
M+W r-0 M-+m az r-1 

and where the pressure gradient in each case is balanced by contributions from the 
viscous term only. These results indicate that the pressure gradient vanishes along 
the neutral line of the magnetic field (along the pipe’s axis) but rises sharply near the 
edges of the flow on account of the thin boundary layers which are O(M-’) thickness. 
This behaviour corresponds to that exhibited by a slug flow that maintains unit flux. 

3.3. Two-dimensional neutral-point flow through a duct 
The physical set-up is similar to that described for the axisymmetric flow. In an 
analysis simi1a.r to that in $3.1 (Regirer 1960) one can show that only a magnetic 
stream function of the form 

X(X7Y) = ~(h,Y+hl)+H, (Y) (3.28) 
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allows the existence of unidirectional solutions, where h, and h, are constants and 
where H ,  (y) is the stream function for the induced component of magnetic field. The 
case h, = 0 corresponds to flow in a uniform transverse magnetic field or the much- 
studied Hartmann flow. In  the present problem we consider the situation where 
h, = - 1 and h, = 0 and specify the magnetic field according to 

B = V x ([ - xy +Hl (y )] 2) 
= (b(y) -x, y> O ) ,  (3.29) 

where H;(y) = b(y) and 2 is normal to the plane of the flow. Consequently, the applied 
and induced magnetic fields have the form 

B, = (-x, y, O ) ,  b = (b(y), O , O ) ,  (3.30) 

respectively. The unidirectional flow we seek to describe has the form 

24 = (u(y)t 0, O ) ,  (3.31) 

whose component again satisfies a third-order differential equation obtained from 
the vorticity equation. The velocity interacts with the applied magnetic field 
component B, to form a current distribution normal to the flow which gives rise to 
the induced component of magnetic field whose stream function H,(y) is related to 
u ( y )  in a manner similar to the axisymmetric case (3.12), giving 

H;b) = b’(y) = -RInu(y)y. (3.32) 

In  the flows we consider it is assumed that there is no variation in the plane 
perpendicular to the flow. This assumption appears to be valid experimentally if the 
aspect ratio of the channel is very large. However, the sidewalls of the channel are 
important in determining the return path of currents induced in the flow and hence 
also the distribution of electric field. The various modes of operation of a given duct 
ranging from an e.m. brake to that of a generator depend on the conductivity of the 
sidewalls and are tabulated in Shercliff (1965, p. 148). For our particular purposes the 
sidewalls are assumed to be perfectly conducting with no electric field present, which 
ensures efficient brake operation. As it happens, the MHD flow considered in this 
paper passes through a symmetrical magnetic field distribution which produces zero 
net crosswise current and as a result is independent of the nature of the sidewalls. 

These crosswise currents lie perpendicular to the plane of motion and are described 
by 

j = u x B, = yu(y) 2, (3.33) 

using (3.30) and (3.31). When the velocity and magnetic field are specified according 
to (3.30) and (3.31) respectively, the Navier-Stokes equation linearizes according to 
(3.4) and has transverse and longitudinal pressure components similar to the 
axisymmetric situation. The equivalent form of (3.5) in two dimensions becomes 

(3.34) 

Eliminating the pressure by taking the z-component of the curl of (3.34) results in a 
vorticity equation that is a differential equation in u(y )  : 

u”’-M2y(yu)’ = 0. (3.35) 

Before solving (3.35) i t  is worth comparing it to the stream function-vorticity 
equation (2.13) which was derived on the basis that the induced field can be ignored. 
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Substituting the present forms of the magnetic field B, and velocity u from (3.30) and 
(3.31) respectively into the nonlinear partial differential equation (2.13) yields (3.35) 
again. Clearly, the induced field contributes no rotational terms to the curl of the 
Lorentz force since it is parallel to the channel and is dependent on the transverse 
coordinate only. 

We seek solutions to (3.35) for the range 0 < y < 1 and by the symmetrical nature 
of (3.35) we can apply the result to the range - 1 < y < 0. The boundary conditions 
are similar to those of the axisymmetric flow, namely 

u( + 1) = 0, u’(0) = 0, 2 u(y) dy = 1, (3.36) 

which are the non-slip, symmetry and prescribed unit flux requirements respectively. 
Once again unit flux is specified rather than a pressure gradient so that a direct 
comparison may be easily made with corresponding profiles in the numerical study 
of flow in a magnetic field formed by a quadrupole arrangement of line currents (see 
$ 5 ) .  The transformation Y = M‘ry simplifies (3.35) to the following differential 
equation : 

u”‘ - Y( YU)’ = 0, (3.37) 

where u(y) = U(Y) .  The general solution to (3.37) can be obtained by a one-step 
transformation to a more tractable second-order ordinary differential equation, 
Murphy (1960). Equation (3.37) is a specific case of the following general equation: 

u”’+Zf(Y) u’+f(Y) u = 0, (3.38) 

where f( Y )  = -4yZ in this example. If we now solve 

(3.39) 

then the solution to (3.38) is given by 

where gl, g2 are the complementary solutions of (3.39). 
The general solution for the velocity becomes 

(3.41) 

where /3 = l$ and A , B ,  C are constants. Despite appearances the modified Bessel 
functions I !  (by’) and Pi (by’) are odd functions of y and care must be taken to 
ensure that symmetry is applied properly over the range - 1 < y < 0. If we impose 
the boundary conditions (3.36) then we can specify the velocity up to a multiplicative 
constant A@), which is determined by the condition of unit flux passing through any 
cross-section of the channel : 

(3.42) 

The induced magnetic field follows from application of Ohm’s law using (2.8) and 
(3.33) once we have established the following indefinite integral relationship : 

(3.44) 
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FIGURE 3. Two-dimensional velocity profiles at various Hartmann numbers with unit flux. 

and so 

WY) = -Rm A (P)Y (PI 1 2, -1; (PY 2, I :~(P) -1: (PI ~ : ( P Y  

+ q p ) l  +(Py2) + 1; (BY; (P) - e t ( P ) q P ) I  1 (3 -45) 

with the boundary condition that b( 1) = 0 for the reasons given in the previous 
section. The equation for the pressure gradient in (3.34) may be integrated in a 
manner analogous to the axisymmetric case to give 

(3.46) 

where we have used (3.32). The constant k can be found from (3.34) and (3.43) and 
denotes the constant background pressure gradient. Once again the pressure depends 
on the transverse coordinate y at large +x in contrast to Poiseuille flow where the 
pressure is uniform across the channel. As explained earlier, this is a consequence of 
the unbounded extent of the magnetic field. 

The analysis involved in both the two-dimensional and axisymmetric flows is 
similar and one is tempted to infer that the resulting behaviour of the two flows is 
also likely to be similar. That this is not so is demonstrated by the contrasting 
asymptotic behaviour of the two flows a t  large values of M .  In  this limit both flows 
are governed in the core by 

V x (i x B} = 0 or in two dimensions B- V j  = 0 (3.47) 

(see also (3.25)). Using the expressions f o r j  and B from (3.33) and (3.29) respectively 
one deduces that in this limit 

(3.48) ( y u ) ’ = O  or U - - .  

Clearly, therefore, the two-dimensional flow exhibits a jet-like structure centred on 
y = 0 in contrast to the slug profile of axisymmetry. This behaviour is clearly 
illustrated by the profiles in figure 3. I n  both cases the governing physical principle 
is that the curl of the Lorentz force is approximately zero for largeM and this implies 
differing constraints on the velocity in the different geometries. Arguments similar to 
those employed in the case of axisymmetry show that the pressure gradient along the 

1 

Y 
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neutral line (y = 0) is balanced by the viscous term present in (3.34). Inspection of 
figure 3 shows that boundary layers form near the axis of the channel y = 0 which 
from (3.37) have thickness O(M-i). Consequently, in contrast to the axisymmetric 
case the longitudinal pressure gradient is not small but is balanced by the boundary- 
layer derivatives present in the viscous term. The boundary layers near the walls of 
the channel y = f 1 are of O(M-') thickness as is usual for Hartmann-like flows. 

4. Numerical study of two-dimensional flows in non-uniform magnetic 
fields 

In this section a numerical formulation for modelling two-dimensional MHD duct 
flows in the presence of a non-uniform magnetic field is presented. The full set of 
MHD equations are solved subject only to the assumption of small magnetic 
Reynolds number (i.e. that the induced magnetic field component of (2.2) is 
negligibly small compared to the imposed field). This assumption leads to an 
uncoupling of the magnetic field and velocity so that the steady motion can be 
described by the stream function-vorticity equation (2.13). In  two dimensions we 
can simplify (2.13) to a single scalar equation by introducing a stream function 
u = V x ($2) (2 normal to the plane of flow) to give 

1 
R 
- v"- (u . v )w=vx[ (uxB, )xB, ] . z"  

= --"(B,47)2$1, (4.1) 
where w = -V2$. This equation forms the basis for modelling a liquid-metal flow 
through a specified non-uniform magnetic field B,. Most other numerical studies have 
tended to consider the effect of a non-uniform field normal to the plane of flow using 
either a finite-element analysis (Yugawa & Masuda 1982)' or a finite-difference 
analysis of the coupled Navier-Stokes and Maxwell equations (Ramos & Winowich 
1986). Gel'fgat, Peterson & Shcherbinin (1978a, b)  also employed a finite-difference 
analysis based upon the stream function-vorticity equation (4.1) but with the 
simplifying assumption that the magnetic field possessed a single component normal 
to the plane of flow. The numerical scheme employed to solve (4.1) is based upon a 
highly accurate method which has proven effective for classical hydrodynamical 
problems. 

4.1. Description of numerical scheme 
The technique employed to solve the vorticity equation (4.1) is based upon an 
iteration scheme using the 'Compact explicit h4 finite difference approximations to 
operators of the Navier-Stokes type ' by Dennis (1985) and was the culmination of 
earlier work on accurate numerical representations of partial differential equations 
(Dennis & Hudson 1979, 1980). The 'Compact h4' approach is based upon the use of 
integrating factors and combinations of one-dimensional problems. However, the 
same set of equations can be obtained using the two-dimensional extension of the 
Numerov method for expanding the ordinary differential equation f" = g in finite- 
difference form. For further details of the numerical scheme the reader is referred to 
Dennis (1985) and Kenny (1990). 

The h4 approximation to V2$o = -wo represents a convenient starting point in the 
scheme, namely 

4($1 + $2+ $3 + $4) + $5 + $6 + $7 + @g-20$0 = -ih2(@1 - k W 2  + + w 4  + + o(h6)> 
(4.2) 
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using a cubic array of grid points: 

6- 2.  5 -  

3. 0. 1. 

7 .  4. 8. 

In order to obtain a similarly accurate representation of the stream func- 
tion-vorticity equation with no forcing term present we apply the Numerov method 
to the following two equations : 

(4.3) 

where (u, v) are the components of the velocity. The resulting approximation to (4.3) 
in terms of the compact tridiagonal scheme gives 

(4.4) 

The coefficients c,, c$-c4 contain partial derivatives of the velocity with respect to x 
and y. The coefficients E, and Do are both O(h4) and it remains to evaluate them 
correctly without introducing any terms greater than O(hs).  Full details of these 
coefficients are given in Dennis (1985). 

Stability of the iteration procedure used to calculate w, is dependent upon the 
diagonal dominance of the scheme, i.e. the associated matrix of the nine-point star 
centred on any grid point contains positive definite diagonal elements for all values 
of the velocity and its derivatives. Since normally the velocity components u and v 
in (4.3) are multiplied by a Reynolds number factor (here omitted for the sake of 
clarity), which may be fairly large, diagonal dominance of the scheme could be lost. 
For stability purposes this is an undesirable feature and 0. Tutty (1988, personal 
communication) circumvented this possibility by reducing the situation to that of a 
diagonally dominant matrix plus an additive correction (known later as the ‘RHS 
correction’). Following Tutty, therefore, the scheme of (4.4) is reduced to the form, 

w,,-uuw, = r = -(wyy-vwy), 

c1 w1 +c2 w2 + c3w3 +c4 w4 - ( C , + C t )  w, +E, +Do = 0. 

dl w1 +d2 w2 + d 3  w3 + d, ~ 4 - d ~  w0 +Fo = 0, (4.5) 

do = d l + d 2 + d 3 + d 4 + 8 .  (4.6) 

where d, > 0 (n = 0, 1,2 ,3 ,4)  and, 

This derives from a rearrangement of terms in E,  and Do and the coefficients of wo*4 
in (4.4). The coefficients d, involve only values of u and v at (x,, yo) whilst those terms 
in F, contain values of u, v a t  the corner points 5,6,7,8 together with any terms 
involving (aulax),, (a2u/az2),, (av/ay), and (a2v/ay2)o in the coefficients of wl, w2, w3 
etc. 

Inclusion of a generalized body force term R(x,  y) on the right-hand side of the 
stream function-vorticity partial differential equation in (4.3) is relatively easy to 
implement. Proceeding in exactly the same way as before one finds, 

4 

C dnwn-do~o+Fo+Go = 0,  
n-1 

(4.7) 

where the d, (n = 0,1 ,2 ,3 ,4)  and Fo are the same as before and Go includes the extra 
body force terms in the following manner: 
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4.2. Lorentz force 
Up to this point a numerical procedure has been described which shows how to 
construct a representation of the stream function-vorticity equation (4.3) accurate 
to O(h4). This allows us to solve accurately hydrodynamic problems with a specified 
body force distribution, examples of which are given by Dennis (1985). The novel 
application of this numerical scheme to the solution of the MHD equations describing 
two-dimensional channel flow presents several complications which need to be 
overcome. The first concerns the nature of the magnetic body force term appearing 
in (4.1). The rotational component of the Lorentz force -N{(B,.V)2yk} depends on 
present fluid behaviour in the form of u, v and w.  These extra terms must be included 
in Tutty’s scheme (4.5)-(4.6) without incurring any loss of accuracy or disruption to 
the original diagonal dominance of the scheme. The expansion of this rotational term 
becomes 

r 

-N(B,* V)’yk = -Biz V ,  + Biv uY + BoZ B0, (u , -v~)  

where B, = (BOz,BOy,O) and (u,v) = (yky, -yk,,O). 
The quantities u and v appearing in (4.9) are already evaluated to O(h4) and it 

remains to estimate the derivatives of u and v to a similar order of accuracy. 
Consequently, the general expression for the forcing term (4.9) can be found and 
included in Tutty’s scheme according to (4.7) and (4.8). It is important to identify 
any terms arising from the force term Go in (4.8) which might affect the diagonal 
dominance of Tutty’s scheme. It is found that the choice of representing the 
rotational Lorentz force term (4.9) in terms of the elements of the compact scheme 
shown earlier results in a positive contribution to the diagonal dominance of Tutty’s 
scheme (4.5)-(4.6) in the following way: 

[d, + Qh2WBiz]w, + [d, + $h2M2BQwa + [d, + #h2M2B~z]0, 

where 6, is the suitably modified form Q, in (4.7) and where the components of the 
magnetic field B, are evaluated at  index point 0. The remaining magnetic terms 
contained in a0 are a mixture of velocity and stream-function values and ‘off- 
diagonal’ vorticity values. A possible breakdown of the scheme occurs if the new 
terms in the ‘ RHS correction ’ matrix, F, + 6, become of the same order of magnitude 
as those of the diagonal coefficients for large values of M .  A numerical breakdown in 
this sense means that the scheme will not converge and is a consequence of the fact 
that thin boundary layers have formed, for example, near to the channel walls, which 
cannot be resolved by the chosen grid spacing. The gradients of quantities in the 
vicinity of such layers become very large and hence the diagonal dominance of the 
scheme in (4.10) may be upset. 

+ [d4 + $h2WBiyI~, - [do + ih2M2(Bz + B;),]U, +Fo + do = 0, (4.10) 

5. Boundary conditions 
The general flow situation which we wish to model consists of a specified two- 

dimensional duct flow encountering a region of non-uniform magnetic field which 
acts for a certain length of channel. Assuming the channel is long enough, the flow 
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then emerges from this region and adjusts to the Poiseuille profile over the remaining 
‘ field-free ’ length of channel. A diagram showing the general flow situation which is 
modelled is given in figure 1.  The total length of duct over which the magnetic field 
acts on the flow and the length associated with the recovery of the flow to Poiseuille 
type is modelled as a rectangular box. This specified rectangular region is a 
consequence of the elliptical nature of the stream function-vorticity equation, (4. l),  
and has boundary conditions applied to each of its sides. We must now describe a 
suitable set of boundary conditions which model reality as closely as possible. At the 
input, the stream function $ and vorticity w are independently specified but in the 
neutral-point flow examined later are usually associated with the Poiseuille entry 
conditions. Downstream, at the exit to the domain, the flow has fully recovered from 
the disturbance and is now of Poiseuille type. The impetus for the flow is provided 
by the condition that unit flux passes through the channel such that $( + 1) = 1 and 
$( - 1)  = 0, where y = f 1 denotes the walls of the duct. Also, the non-slip condition 
at  the sidewalls implies that +,( & 1 )  = $& f 1) = 0. 

Implementing the boundary conditions into a numerical scheme requires certain 
assumptions and simplifications if the scheme is to work effectively. For example, in 
the neutral-point flows considered later the magnetic field is generated by a 
quadrupole distribution of line currents external to the duct which decays with 
increasing distance along the duct. The numerical scheme fixes an effective range for 
the field and ensures a smooth transition to the ‘field-free’ region. A less strict 
application of the downstream Poiseuille exit conditions is also required to make the 
numerical scheme work efficiently. Inevitably, any numerical code introduces errors 
which, when confined to a well-defined region, tend to propagate backwards and 
forwards inside that region. The Poiseuille exit conditions are therefore relaxed in the 
numerical model to prevent the accumulation of these error waves inside the 
rectangular section of channel. The numerical exit conditions used, namely ex. = 
w,, = 0, permit the flow to be a t  most weakly linear in x and provide a means of 
ensuring that the numerical scheme used to model the flow ($4) will converge for a 
range of parameters. 

The implementation of the boundary conditions is an important aspect in 
determining the stability of the numerical scheme (4.10). As is usual with channel 
flows, complications arise near the boundaries and variables are not guaranteed to be 
evaluated there to the same order of accuracy as in the main flow region. This applies 
particularly to the estimation of wall vorticity values at  y = f 1 ,  which are found to 
critically determine the overall rate of convergence of the numerical scheme. In this 
case we use a polynomial expansion using four grid values of $ involving known 
boundary conditions so that the approximation of +uu (= -0) is correct to O(h4). 
However, at large Hartmann numbers the possibility of boundary-layer formation 
requires that the number of grid points used in the estimation of w is not greater than 
the number of grid points spanning any boundary layers. It was assumed that where 
the magnetic field was nearly transverse to the channel wall the layer thickness was 
O(M-l),  which enabled an estimate to be made of the suitability of modelling the flow 
with the fixed grid scheme of 32 x 512 points. 

6. Flow through non-uniform magnetic fields containing a neutral point 
The numerical procedure outlined in $4 is now applied to model a fully developed 

two-dimensional channel flow impinging upon a region of non-uniform magnetic 
field. The initial entry conditions are taken to be those of Poiseuille, assuming that 



Liquid-metal flows near a magnetic neutral point 217 

sufficient length of duct exists for the flow to settle down prior to entering the region 
of non-uniform field. In practical situations the flow will frequently emerge from a 
receptacle (e.g. tun dish) with a profile that is unlikely to be of Poiseuille type. A 
' slug ' (uniform) input might be considered a more suitable entry condition ; however, 
this introduces additional complications owing to the hydrodynamic evolution of the 
slug component itself (Van Dyke 1970). For a more extensive consideration of MHD 
flows with 'slug' entry conditions the reader is referred to Kenny (1990). It was 
observed in later numerical experiments that the pressure and volume flux results 
were not significantly altered by using a slug input, because it was the 'excess' 
pressure over and above that of the basic hydrodynamic behaviour that mattered. 
Consequently, for ease of computation a Poiseuille input was applied to the channel. 

The case study employs a quadrupole magnetic field derived from four line 
currents external to the duct. In practical situations the effective range of the 
magnetic field is limited since it falls off rapidly with increasing distance along the 
duct. The corresponding numerical model switches on the magnetic field to an initial 
low value which acts for a specified length of duct and is then turned off from a 
suitably low value, allowing the flow to settle down again over the remaining length 
L of channel. An estimate can be made of this length L ,  which is useful for predicting 
a sufficiently long standard length of duct which may be employed in all the 
numerical experiments. Any disturbance introduced into a flow, in this case of a 
magnetic nature, tends to create a non-uniform distribution of vorticity which 
decays according to a timescale 7 ,  given by 

T - a2/v, (6.1) 

where a is a characteristic lengthscale of the disturbance, which in this case 
corresponds to the width of channel, and where v is the kinematic viscosity. The 
timescale T can be estimated by considering the combination of a typical x- 
component of velocity U, and the length L over which the vorticity distribution 
decays, T - LILT,. The two expressions for T can be combined to provide an estimate 
for L :  

(6.2) 

from the definition of R in (2.12). This expression for L provides a rough estimate for 
the length of duct required sufficient to model all the flows considered and was taken 
to be 16 times the width. The effect of varying the channel length by a few widths 
was investigated and showed that for the range of R values considered the Poiseuille 
profiles at  the exit changed by a negligible amount. It was concluded, therefore, that 
ample channel length had been allocated for the flow profiles 'to settle down to 
Poiseuille type. The extent of channel over which the magnetic field was permitted 
to act was six channel widths. A sketch of the arrangement including details of the 
boundary conditions is shown in figure 1. 

L - a'U,lv = aR, 

6.1. Quadrupole magnetic field 
The quadrupolar arrangement of line currents gives rise to a magnetic stream 
function x of the form 

x K log [ ( d -  y)' + (2a - 4 2 1  -log [ ( d  - y)' + (2a + x)Z] 

+ log [ (d  + y)z + (2a + x ) ~ ]  - log [ (d  + y)' + (2a - x ) ~ ] ,  (6.3) 

where d is the distance of any line current from the axis of the channel. A constant 
of proportionality is implied in (6.3) which is chosen so that x - xy near to the 
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FIGURE 4. Plots of (a) total pressure drop and (a) excess pressure drop against R for various 
increasing values of the Hartmann number. 

neutral point and allows easy comparison of this study with that involving the 
extended neutral point (3.29) discussed in $3. This factor is quite large, O(10) for 
a = 2 and d = 1.5, and should really be incorporated into the definition of the 
Hartmann number in (2.11) for this flow. However, rather than change the definition 
of M it should be simply be borne in mind that the effective values of M are larger 
than those indicated in the figures. 

6.2 Analysis of pressure results at $xed volume flux 
At the end of each computation on a given flow, the Hartmann number M ,  Reynolds 
number R, interaction parameter N ,  pressure drop across the ends of the duct Aptot 
and ‘excess’ pressure drop Ape were recorded for unit flux. The concept of ‘excess’ 
pressure drop was introduced to measure the pressure drop over and above that due 
to the Poiseuille component of the flow. The behaviour of the pressure drops shown 
in figures 4 and 5 is computed from (2.9) which is rewritten as 

1 
Vp = -+V(U*U)+U x n + N j x  B0+-V2u. R (6.4) 

Integrating the x-component of (6.4) between the ends of the channel and assuming 
that at the exit of the channel there is Poiseuille flow (as it is at the input) gives 

RAP,,, = R s’ vw dx +W l : j x x  dx + 1; V2u dx, (6.5) 

where x,, x, and x, denote the entrance of the channel, the end of the magnetic field 
region and the channel exit respectively, and where (u, v) are the components of the 
velocity, j is the z-component of current and - x x  is the y-component of the magnetic 
field from (6.3). The boundary conditions imposed upon the flow imply that AptOt 
does not vary with position across the duct and we can select any convenient 
pathway between the ends of the channel with which to evaluate Alltot. The axis of 
the channel (y = 0) is a convenient location to calculate Apt,, since the flow is 
symmetrical and v = 0 there, which eliminates the first integral in (6.5), whilst the 
second vanishes with y = 0 due to the form of B, derived from (6.3). Equally, we may 
integrate along the walls of the duct since u = 0 there and once again the same two 
integrals vanish. 

Figure 4 (a )  plots several curves of RAptot against R for an increasing series of M -  
values varying from aboutM = 0 to 35, all at fixed unit flux. The curves exhibit both 

XO 
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FIGURE 5. Log-log plots of (a) total pressure drop and (b) excess pressure drop against the 
Hartmann number at a fixed value of R = 50. The gradient of the asymptotic straight line is 
approximately 0.60. 

an increasing intercept with the pressure axis and a greater limiting linear gradient 
with increasing magnetic influence. A cross-section of figure 4(a) which records the 
variation of the quantity RAptot plotted as a log-log relationship against M for 
R = 50 is shown in figure 5 (a). Since the values of the parametersM,NandR are mostly 
O(1) it  appears to be difficult to sort out the magnetic from the viscous behaviour; 
consequently, in an attempt to separate some of the viscous and magnetic effects the 
idea of ‘excess’ pressure was introduced, which differed from the total pressure drop 
by simply subtracting the pressure drop due to a Poiseuille flow over a similar length 
of channel. Figure 4 ( b )  shows excess pressure drop against R for increasing M-values. 
The graph corresponding to figure 5 (a) but involving the excess pressure Ape (figure 
5 ( b ) ,  indicates the linear nature of the relationship log RApe against logM for large 
values of M ,  resulting from the definition of excess pressure. 

An asymptotic study of the stream function-vorticity equation in the limit of large 
M may be carried out by assuming that the flow forms a jet-like structure along the 
axis of the channel. This behaviour was predicted by a previous analytical 
observation in (3.48) for an extended magnetic neutral point. In  this narrow region 
the y-component of velocity is zero from symmetry conditions and the derivatives of 
quantities in the x-direction are assumed to be much smaller than those in the y- 
direction. Consequently, the boundary-layer equation derived from (2.13) consists of 
a balance between the viscous and magnetic terms, so that 

which applies in the neighbourhood of the neutral line and where we have used (2.12) 
and the fact that (Bo.V) - xa/az+ya/ay is O(1) along the axis from the form of Bo 
derived from (6.3). The order-of-magnitude relation in (6.6) applies all along the 
magnetic neutral line despite the algebraic decay, which does not affect the nature 
of the derivatives appearing on the right-hand side of (6.6). If we scale the y- 
coordinate according to, 

where Y = 0(1), then substituting into (6.6) and balancing the principal terms gives 

y=SY, 6 9  1, (6.7) 

6 = O ( W t ) .  
8 
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This compares with earlier analytical work on extended two-dimensional neutral- 
point flows which suggested the development of a jet structure for large values of M 
in (3.48), with a width O(M-f) from (3.35) and (3.37). 

The asymptotic behaviour of RAP, against M for fixed R and volume flux is now 
investigated and compared with what is observed numerically. Evaluation of RAP, 
along the neutral line (y = 0) gives, 

which is obtained using the symmetry condition vlY,,, = 0 in (6.5) and where upois 
denotes the Poiseuille component of velocity. The dominating behaviour of the right- 
hand side term in (6.9) a t  large M is given by 

lim RAP, - ( i i / S 2 )  ( x l - x o )  - M.ii(x,-x,), 
M+'x 

(6.10) 

where ii is an estimate of the jet velocity. The specified volume flux Q may be related 
to ii if certain assumptions about the structure of the flow are made. Firstly, we 
assume that the jet velocity is approximately constant across the central boundary 
layer of thickness O(M-d). The contribution, QJ, to the total volume flux from this 
region is estimated as 

QJ - *-f, (6.11) 

Secondly, across the core of the flow i t  is assumed that the x-component of velocity 
behaves as - l /y  according to  (3.48). Matching the core profile to that near the axis 
and integrating across the core yields an approximate expression for the volume flux, 
Qc, flowing in this region: 

Qc - W-tlogM. (6.12) 

Near to  the walls of the channel there are Hartmann-like boundarr layers of 
thickness O(M-'). Matching the sidewall profile with that in the core, i7JP/y, enables 
us t o  estimate the volume flux QH flowing in these layers, giving 

QH - W-S. (6.13) 

Adding the estimates of contributions to the total volume flux Q at large M from 
(6.11)-(6.13) gives 

Q - ii10gMM-f. (6.14) 

Equations (6.10) and (6.14) can be combined to provide an estimate for the 
asymptotic behaviour of RAP, at large M for fixed Q, to give 

@ lim RAP, - - 
M-m log M ' 

(6.15) 

In  figure 5 ( b )  it appears that the gradient of the asymptotic straight line of log RAP, 
against logM is 1.46, which agrees well with the theoretical prediction - b& for the 
dominating magnetic pressure contribution in Ape, (6.15). 

6.3. Analysis of volume flux results at ,fixed pressure drop 
I n  practical situations involving a tun dish it is more convenient to maintain a 
constant hydrostatic head of metal and to measure variations in the mass or volume 
flux of the exit flow for various magnetic field strengths. I n  order to do this 
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FIGURE 6. Plots of volume flux Q against interaction parameter N at (a) constant total pressure 
drop, and (a) constant excess pressure drop. 

numerically, from the data collected at  various fixed values of the volume flux, 
advantage is taken of the fact that similar flows result when $ is scaled by A ,  R by 
l / A  and the pressure drop by a factor A2. The latter condition can be expressed as 

AP(M,R, Q )  = (l /h2)Ap(M,R/A, hQ), (6.16) 

obtained from rescaling (6.5). This relation was checked numerically by scaling a 
known $, w at a given M and R to give A$, hw, M ,  R / h  and substituting back into 
the scheme to verify that it remained a solution. The resulting pressure drop was 
compared with that obtained previously and observed to satisfy (6.16). The 
relationship in (6.16) allows the data to be inverted so that the variation of the 
volume flux Q with N (interaction parameter) may be examined at a given pressure 
drop. The results shown in figure 6(a) indicate that no simple correlation exists 
between Q and N when the total pressure drop is fixed. In  contrast, the plot shown 
in figure 6(b) at fixed Ape appears to outline a curve which would be more clearly 
plotted as a log-log relationship between Q andN. The former behaviour is no doubt 
due to the inclusion of the viscous contribution to the pressure drop whilst the latter 
mostly includes the magnetic component of pressure. In  order to examine such 
behaviour we consider an excess pressure drop evaluated along the magnetic neutral 
line (axis of the channel y = 0) similarly to (6.9). The right-hand side of (6.9) is 
evaluated at various values of Q, R,  M and N keeping Ape fixed. In the case of large 
M it was mentioned before that a boundary layer of thickness O(M-i) forms near to 
the axis of the channel, (6.8). Using the asymptotic relationship derived in (6.15) but 
keeping Ape fixed we find 

lim Q - NGblog (NR). 
M-C.3 

(6.17) 

The asymptotic behaviour of Q in (6.17) therefore predicts a dependency on both N 
and R .  However, the corresponding numerical plot of log Q versus logN, shown in 
figure 7, indicates the approximate relation Q - N-i, independent of R .  For the range 
of values of Q and N considered it seems likely that these values fall coincidentally 
on the curve Q - N-i. A deeper investigation of the parameter space would reveal a 
fully three-dimensional dependence on Q, N and R .  That this is likely can be observed 
in figure 6(b), where there is an increasing scatter of points for increasing N ,  
signifying a possible transition from the inertial dominance of the flow. Unfor- 
tunately, the constraints of computer storage upon the numerical code prevented 

8-2 
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FIQURE 7. Log-log plot of volume flux Q against interaction parameter N for fixed excess 
pressure drop. Gradient of asymptotic straight line is approximately -0.46. 
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FIQTJRE 8. Profile of (a) of the z-component of velocity and (b) the vorticity at the geometric 
centre of the four wires (-) compared with the unidirectional analytical solution of an extended 
neutral point (.-.-.-.-.) 
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FIGURE 9. Plot of streamlines for M = 15, R = 75. 

a deeper investigation into the asymptotic regime of this flow. However, previous 
experimental and numerical studies have mostly looked at the behaviour of flows for 
whichM, iV+ a, e.g. Holroyd & Hunt (1978), so that the case ofN = O(1) has novel 
implications. Indeed, the extent to which the flow rate diminishes with field strength 
has practical application in the factory environment where flow control devices tend 
to function with a constant hydrostatic head and may operate in the N = 0(1) 
regime. 

6.4. Comparison of analytical and numerical results 
The definitive test of the linear theory of two-dimensional neutral-point flows ($3) 
can now be observed in figures 8 and 9. A comparison of the 2-component of velocity 
obtained numerically in a cross-section through the neutral point and that derived 
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analytically is shown in figure 8(a) .  A similar comparison for vorticity is shown in 
figure 8 (b ) .  The good agreement of results does not apply on either side of the neutral 
point as, farther downstream for example, disparities between the two flows emerge 
once the fully developed flow undergoes flow reversal at the walls. This behaviour is 
demonstrated in figure 9 which traces the streamlines throughout the channel for 
M = 15 and R = 75. The parallel streamlines at  input are increasingly disturbed by the 
curvature of the magnetic field lines and some of the flow undergoes reversal opposite 
to each of the line currents. It will also be observed that in the vicinity of the neutral 
point the flow is non-symmetric about the line x = 0 which is an expected feature of 
the stream function-vorticity partial differential equation (4.1). Finally, after 
passing through the magnetic disturbance the streamlines readjust over a length of 
duct according to (6.2) and become parallel once again. 

7. Concluding remarks 
In  this paper we have shown that unidirectional flow occurs in the vicinity of a 

local neutral point when a fully nonlinear flow of liquid metal encounters a region of 
quadrupole magnetic field. The corresponding linear problem ($3) examines 
unidirectional flow through a neutral point extending throughout a given flow. The 
good agreement of results does not apply on either side of the neutral point as, 
farther downstream for example, disparities between the two flows emerge once the 
fully developed flow undergoes flow reversal at the walls. The regions of flow reversal 
occur near each line current and become more pronounced with increasing M ,  
corresponding to a stronger pinching effect exerted on the flow. 

A second feature of the numerical study concerned the nature of the Q versus N 
graph, at  constant excess pressure, which provides information on the quantity of 
fluid braked under certain conditions and enables further predictions to be made. 
Even though turbulence is often present in most flows and the value of R rather 
uncertain, some estimates can be made if the magnetic forces dominate and N is 
known, which is quite often the case with practical liquid-metal flows. 

The numerical model discussed in this paper can be used to solve many other types 
of MHD flows; further examples may be found in Kenny (1990). For example, it is 
observed that two line currents placed symmetrically above and below the duct yield 
similar flow behaviour to that observed using four wires. A more instructive problem 
examines duct flow impinging upon a region of field generated by a single line 
current. In  this problem the boundary conditions perpendicular to the plane of flow 
(or direction of no variation) are important in determining the presence or otherwise 
of an electric field. In  order to optimize the braking action of the flow the walls are 
assumed to be perfectly conducting to provide a return path for the currents induced 
in the flow. The chief difference in this study is the effect of the wall (farthest from 
the line current,) on the flow compared to the previous symmetrical flow problems. 
At large values of M a jet structure of finite width and extent develops along this 
particular wall. The reason for the formation of this well-defined jet region can be 
explained by the nature of the magnetic components in that region. The two field 
components along the wall provide terms of equal weight when incorporated into the 
asymptotic form of (4.1). Consequently, a boundary-layer scaling for the extent of 
the region along the duct wall is required in addition to that characterizing the 
width. 

The development of a highly accurate numerical code to solve two-dimensional 
MHD duct flows through non-uniform fields (varying in the direction of flow) 
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provides a powerful means of understanding the behaviour of these flows in various 
parameter ranges. Indeed, the code is flexible enough to incorporate any form of 
magnetic field, even those specified by a series of data points. The next important 
development requires the extension to axisymmetry which will provide a clearer 
insight into the behaviour of a fully three-dimensional MHD flow control device. A 
full axisymmetric model of the nonlinear flow might also verify the presence of 
unidirectional flow (53) in the vicinity of a local neutral point established for example 
by two current-carrying coils. 

The work was undertaken at  the Department of Applied Mathematics and 
Theoretical Physics, Cambridge University and the author is greatly indebted to Dr 
0. Tutty for his invaluable advice on the numerical code and to his supervisor Dr 
A. J. Mestel for his solid advice throughout. 
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